The Prolongation of the Lifespan of Rats by Repeated Oral Administration of [60]Fullerene

(also known as The University of Paris Study or The Baati Study)
Biomaterials, Volume 33, Issue 19, June 2012, Pages 4936-4946. Available Online 10 April 2012
Tarek Baati, Fanchon Bourasset, Najla Gharbi, Leila Njim, Manef Abderrabba, Abdelhamid Kerkeni, Henri Szwarc, and Fathi Moussa

“Countless studies showed that [60]fullerene (C60) and derivatives could have many potential biomedical applications. However, while several independent research groups showed that C60 has no acute or sub-acute toxicity in various experimental models, more than 25 years after its discovery the in vivo fate and the chronic effects of this fullerene remain unknown. If the potential of C60 and derivatives in the biomedical field have to be fulfilled these issues must be addressed. Here we show that oral administration of C60 dissolved in olive oil (0.8 mg/ml) at reiterated doses (1.7 mg/kg of body weight) to rats not only does not entail chronic toxicity but it almost doubles their lifespan. The effects of C60-olive oil solutions in an experimental model of CCl4 intoxication in rat strongly suggest that the effect on lifespan is mainly due to the attenuation of age-associated increases in oxidative stress. Pharmacokinetic studies show that dissolved C60 is absorbed by the gastro-intestinal tract and eliminated in a few tens of hours. These results of importance in the fields of medicine and toxicology should open the way for the many possible -and waited for- biomedical applications of C60 including cancer therapy, neurodegenerative disorders, and ageing.

Below are the relevant charts from the above mentioned study that outlines in a schematic / graph the particulars of rat survival.”


Possible Mechanisms of Fullerene C60 Antioxidant Action

Biomed Research InternationalPublished online 2013 Oct 8. 
V. A. Chistyakov, Yu. O. Smirnova, E. V. Prazdnova, and A. V. Soldatov 

 Abstract: “Novel mechanism of antioxidant activity of buckminsterfullerene C60 based on protons absorbing and mild uncoupling of mitochondrial respiration and phosphorylation was postulated. In the present study we confirm this hypothesis using computer modeling based on Density Functional Theory. Fullerene’s geroprotective activity is sufficiently higher than those of the most powerful reactive oxygen species scavengers. We propose here that C60 has an ability to acquire positive charge by absorbing inside several protons and this complex could penetrate into mitochondria. Such a process allows for mild uncoupling of respiration and phosphorylation. This, in turn, leads to the decrease in ROS production.”

Full study available here:


Antioxidant Activity and Toxicity of Fullerenols via Bioluminescence Signaling: Role of Oxygen Substituents

Int J Mol Sci. 2019 May; 20(9): 2324.
Published online 2019 May 10. doi: 10.3390/ijms20092324

“Carbon nano-objects are of great interest for different fields of medicine, pharmacology, and biotechnology due to their specific biological activity [1,2,3]. It is known that high-dose exposures to bioactive compounds can inhibit physiological functions of multiple organisms and, hence, produce toxic effects, while low-dose exposures can activate the physiological functions due to optimization of complex metabolic processes [4].

Fullerenols (F) are known to be rigid nanosized carbon particles, and are water-soluble polyhydroxylated derivatives of fullerenes. Scheme 1 presents the hypothetical structure of F with 60 carbon atoms as an example.”

Full study available here: